Part 6: Transmission formats and laser
control



Stabilizing CW laser to an absolute reference

J Using an atomic or molecular absorption or emission line as reference
o Several examples for ~1550nm, providing different stability

- Side lock to molecular absorption (e.g. C2H2, HCN, CO)

— PDH lock to molecular absorption

- Doppler-free lock to atomic absorption (Rb)

- Two-photon lock to atomic absorption



C2H2 molecular frequency standard

Used as calibration for optical spectrum analyzers, reference for transmitters
HCN and CO are also well-documented, for longer wavelengths in C-band
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Side lock to absorption line

J Maintain percent absorption through reference cell

o Simple to do

e Stability depends on linearity of photodiodes and electronics
- Not a preferred scheme for high stability
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Experiment to measure laser freq. control

network
analyser

freq.
control

CWwW
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diff. amp

oscilloscope

Want wavelength control transfer function of CW laser, for control loop design
Sweep frequency of wavelength control signal and observe transmission through cell

- Center wavelength is adjusted to be on side of absorption line, at 50% point
- Variations in wavelength appear as changes to transmission

Measure $21 on network analyzer, in amplitude and phase



Line center lock (Pound-Drever-Hall)

. Stability is a few % of line width
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Doppler-free line center lock

o Called “saturation spectroscopy”
e Optical frequency at line center will “double dip” the saturating atoms
- Saturation reduces the absorption, by reducing (NO-N1)
- Only the atoms at zero relative velocity will be hit by both counterpropagating
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Two-photon atomic center lock
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Transmit modulated CW

AM or PM of CW signal

- AM commonly used by cable TV industry

— PM used in some communications (DPSK)
o Detection of AM via photodiode

- Be wary of AM-to-PM in diode

J PM can be detected by interferometer and photodiode
J Modulation frequency is arbitrary. Multiple frequencies can be transmitted
e Stabilize fiber via RF or interferometery
] Issues
- Group and phase delay changes with temperature are not the same
- Brillouin scattering nonlinear limit

- Modulation frequency is limited by modulator technology and electronics
(~100GHZz)

e But not limited if “AM sidebands” are actually two independent laser
frequencies (suppressed carrier, double sideband). They will beat on the
detector at arbitrarily high frequencies



Line stabilization using CW interferometer

J Frequency shifting, or heterodyne interferometer
e Same scheme as commercial, distance measuring interferometers
J Maintain constant phase of heterodyne signal with respect to local oscillator
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phase noise, dBc/Hz

Performance of interferometer

jitter of 110MHz beat, 10Hz to 40MHz drift, averaged over 1ms
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e Phase jitter of 110MHz = phase jitter of 200THz

e Time jitter is divided by frequency ratio
- 480ps RMS at 110MHz = 0.26fs RMS at optical
— Loop bandwidth is ~1kHz

e Lasers are typically ~10fs RMS above 1kHz



Mach-Zehnder interferometer test
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. Mach-Zehnder made of two stabilized arms of Michelson interferometers



phase noise, dBc/Hz

Mach-Zehnder test results

Jitter versus frequency: Phase delay in fs versus time:

-20 | | | | | 2.00
40 +— | l.I | 0-25fs RMS, 10Hz to 4OMHz | oy
-60 - M SN . 5 J/
| ‘\JM E 0.00 /A._MVI*’
-80 | ] “‘\\\'f\/
l\/\l © -1.00
100 N s . Pl \\JL)
VMMM i :
-120 — 2 -2.00 3fs in 10 hours
140 300 [ [ [
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 0 2 4 6 8 10

frequency, Hz

e Drift from room and outside temperature
e Total correction is ~100ps per day
e Driftis ~1fs p-p when arms are equal



Experiment to measure group/phase coefficients
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Timing transmission formats, pulse train

*  From modelocked laser

o RF can be extracted via photodiode, at harmonics of reprate

* Detection by electro-optic sampling (mixing)

J Detection by cross-correlation

e  Stabilize fiber by cross-correlation or detection of high harmonic

J Issues
- Need to maintain short pulse over long fiber by dispersion management
— Other nonlinear effects may be a problem
- Transmitted frequencies are only harmonics of reprate



Cross-correlation
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Nonlinear crystal produces sum frequency of carriers (see RWV p. 696), when two
pulses overlap

Autocorrelation when one pulse is split and delayed
- Typical measurement of ultrashort pulses

If two pulses half-overlap, small variations in relative timing are observable as
changes in second harmonic signal

- Sensitivity is a function of the pulse widths, but can be a percent of the FWHM
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Line stabilization via cross-correlation
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Direct use of pulse train

o Fiber-transmitted pulse is recompressed to be short

e Can be frequency converted to match titanium sapphire laser wavelength for
subsequent amplification

J Frequency conversion cleans up “wings” from dispersion mismatch

fiber mode fiber Si prisms

——

input pulse
putp ~100 fs, 775 nm
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Synching RF to a pulse train

. Electro-optic sampling of the RF phase
. Similar to a double-balanced mixer

Think of a mixer as sampling the RF at two points and finding
the difference
Optical signal samples RF at two points and then difference is
found
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Lock ML laser to RF

High harmonics have more “leverage”, but leave ambiguity
—  Solution: coarse lock to fundamental, then fine lock to

harmonic

Can achieve few fs stability under ideal conditions, with

difficulty

- With good lasers, ~10fs is easily achievable with few

GHz harmonic

*Repetition rate is 100MHz.

*2.2GHz harmonic extracted from the
pulse train of each laser and compared

in a mixer
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Lock ML laser to pulse train

o Compare pulse timing with cross-correlation
e Two different wavelength lasers can be used

J Repetition rates can be different if they have some common sub-multiple
e Cross correlation provides high sensitivity to timing error (mV/fs)
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Lock ML laser to CW

e CEO stabilized laser locks envelope to carrier
- Lock carrier to some reference and you are done
. Like a rack and pinion gear arrangement. All locked pinions will be in synch
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Stabilization of ML laser combs at two points

¢ Two degrees of freedom for a comb L
- Repetition rate and offset frequency 1](\” - Hiff!f]] + (S._

optical
offset «&—

RF

OHz 20GHz
1 1 |
2 4 OHz 4 200THz
3
200THz 1 1 205THz
Signal frequencies Offset frequencies 19in time

1 0, 20GHz not measured 140fs

2 | 0, 200THz (400TH2) fixed absolute 0.014fs

3 | 200THz, 205TH=z fixed relative 0.6fs




Comparing comb lines from two lasers
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Two-freq. lock scheme

e Enough information is transmitted in two CW frequencies to lock a second laser in time

o Interferometric line stabilization delivers constant phase for each frequency
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A simplified experiment

reprate
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power spectral density

Results
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